Connectivity is integral to the dynamics of metapopulations through dispersal and gene flow, and understanding these processes is essential for guiding conservation efforts. Abalone, broadcast-spawning marine snails associated with shallow rocky habitats, have experienced widespread declines, and all seven North American species are threatened. We investigated the connectivity and population genomics of pinto/northern abalone (Haliotis kamtschatkana), the widest-ranging of abalone species. We employed reduced representation sequencing (RADseq) to generate single nucleotide polymorphism (SNP) data, assessing population connectivity and potential adaptive variation at 12 locations across the full range from Alaska to Mexico. Despite depleted populations, our analysis of over 6000 SNPs across nearly 300 individuals revealed that pinto abalone maintains a high genetic diversity with no evidence of a genetic bottleneck. Neutral population structure and isolation by distance were extremely weak, indicating panmixia across the species' range (global F ST = 0.0021). Phylogenetic analysis, principal components analysis, and unsupervised clustering methods all supported a single genetic population. However, slight population differentiation was noted in the Salish Sea and Inside Passage regions, with evidence for higher barriers to dispersal relative to outer coastal areas. This north-central region may also represent the species' ancestral range based on relatively low population-specific F ST values; the northern and southern extremes of the range likely represent range expansions. Outlier analysis did not identify consensus loci implicated in adaptive variation, suggesting limited adaptive differentiation. Our study sheds light on the evolutionary history and contemporary gene flow of this threatened species, providing key insights for conservation strategies, particularly in sourcing broodstock for ongoing restoration efforts.
Keywords: Haliotis kamtschatkana; genetic connectivity; marine conservation; population genomics.
© 2024 The Author(s). Evolutionary Applications published by John Wiley & Sons Ltd.