Recent advances in photonic optimization have enabled calculation of performance bounds for a wide range of electromagnetic objectives, albeit restricted to single-material systems. Motivated by growing theoretical interest and fabrication advances, we present a framework to bound the performance of photonic heterostructures and apply it to investigate maximum absorption characteristics of multilayer films and compact, free-form multi-material scatterers. Limits predict trends seen in topology-optimized geometries - often coming within factors of two of specific designs - and may be utilized in conjunction with inverse designs to predict when heterostructures are expected to outperform their optimal single-material counterparts.
Keywords: heterostructure; inverse design; photonic bounds.
© 2024 the author(s), published by De Gruyter, Berlin/Boston.