One ambimodal transition state can lead to the formation of multiple products. However, it remains fundamentally unknown how the energy and entropy along the post-TS pathways mediate ambimodal selectivity. Here, we investigated the energy and entropy profiles along the post-TS pathways in four [4 + 2]/[6 + 4] cycloadditions. We observe that the pathway leading to the minor product involves a more pronounced entropic trap. These entropic traps, resulting from the conformational change in the dynamic course of ring closure, act as a reservoir of longer-lived dynamic intermediates that roam on the potential energy surface and have a higher likelihood of redistributing to form the other product. The SpnF-catalyzed Diels-Alder reaction produces [4 + 2] and [6 + 4] adducts with nearly equal product distribution and relatively flat energy profiles, in contrast to other cycloadditions. Unexpectedly, the entropy profiles for these two adducts are distinctly different. The formation of the [6 + 4] adduct encounters an entropic barrier acting as a dynamical bottleneck, while the [4 + 2] adduct involves a substantial entropic trap to maintain long-lived intermediates. These opposing effects hinder both product formations and likely cancel each other out so that an equal product distribution is observed.