The effect of photoinitiator systems on resin-based composite containing ZnO-nanoparticles

Dent Mater. 2024 Dec 6:S0109-5641(24)00347-6. doi: 10.1016/j.dental.2024.12.002. Online ahead of print.

Abstract

Objective: Zinc oxide (ZnO) powder possesses antibacterial activity and although white in color, it can severely reduce the depth of cure (DoC) of resin-based composite (RBC). This study investigated the effect of unary and binary photoinitiator systems on the DoC and degree of conversion (DC) of formulated RBC containing ZnO-nanoparticles.

Methods: Fourteen RBCs (n = 3/group) were formulated consisting of 50 wt% mixture of monomers (Bis-GMA, TEGDMA, and UDMA) and 50 wt% fillers (inert barium glass powder and silica nanoparticles). ZnO-nanoparticles were added at 0 (control), 0.5, 1, 1.5 and 2 wt%. A unary initiator system consists of camphorquinone (CQ) 0.25, 0.5 and 1 wt% and ethyl 4-(dimethylamino)benzoate (EDMAB) 0.75 wt% or a binary initiator system consisting of diphenyliodonium hexafluorophosphate (DPI) 0.25, 0.5 and 1 wt%, CQ 0.25, 0.5 and 1 wt% and EDMAB 0.75 wt% were added to the monomer mixture. To measure the DoC, each specimen was prepared in a custom-made mold with a slot (16 x 8×2 mm) and a top cover plate, irradiated from one end (40 s), stored dry (37° C, 1 d) and measured at increasing depths using Vickers hardness (0.5 mm intervals). 1 mm thick specimens were prepared to measure DC continuously using FTIR, from zero up to 24 h post-irradiation.

Results: Increasing the concentrations of ZnO led to a significant reduction of DoC (p < 0.05). But most of the binary initiator groups showed significantly higher DoC (p < 0.05). Depth, at 80 % of max VHN, of unary initiator groups reduced from 6.8 mm (ZnO at 0 wt%) to 2.1 mm (ZnO at 2 wt%) and in binary initiator groups from 8.4 mm to 2.3 mm. Groups with lower photoinitiator concentrations (0.25 wt%) showed a significant increase in DoC compared with groups with higher concentrations (1 wt%) (p < 0.05). DC after 24 h was independent of either ZnO concentration or the photoinitiator system (p > 0.05). However, faster conversions were observed in binary initiator groups. The RPmax of binary groups ranged from 8.1 % to 10.1 %/s, and unary groups ranged from 5.2 % to 7.2 %/s.

Significance: The addition of DPI resulted in an overall increased curing depth, which was enhanced when lower concentrations of photoinitiators were used. Also, DPI resulted in faster conversions. This is desirable in designing antibacterial RBC containing ZnO.

Keywords: Degree of conversion; Depth of cure; Photoinitiators; Resin-based composite; Zinc oxide nanoparticles.