Perfluoroalkyl substances (PFAS) are a major public health concern, in part because several PFAS have elimination half-lives on the order of years and are associated with adverse health outcomes. While PFAS can be transported into bile, their efficient reuptake by intestinal transporter proteins results in minimal fecal elimination. Here, we tested the hypothesis that consumption of oat β-glucan, a dietary supplement known to disrupt the enterohepatic recirculation of bile acids, will reduce PFAS body burdens. Male C57Bl/6 J mice were fed diets based on the "What we eat in America" analysis that were supplemented with inulin or oat β-glucan and exposed via drinking water to a seven PFAS mixture (PFHpA, PFOA, PFNA, Nafion Byproduct-2, PFHxS and PFOS) for 6 weeks. One cohort of mice was euthanized at the end of the exposure, and one cohort continued on the experimental diets for 4 more weeks without additional PFAS exposure. The β-glucan fed mice drank significantly more water than the inulin fed mice, resulting in a significantly higher dose of PFAS. Relative to overall exposure, we observed lower serum concentration trends (p < 0.1) in β-glucan fed mice for PFHpA, PFOA and PFOS. Additionally, β-glucan fed mice had lower adipose:body weight ratios and liver and jejunum triglyceride concentrations. Hepatic mRNA expression of Cyp4a10, Cyp2b10 and Cyp3a11 were elevated in PFAS exposed mice, with only the expression of Cyp3a11 decreasing following depuration. This pilot study generates support for the hypothesis that oat β-glucan supplementation can reduce PFAS body burdens and stimulate healthful effects on lipid homeostasis.
Keywords: Dietary fiber; Excretion; Oat beta-glucan; PFAS.
Copyright © 2024. Published by Elsevier Inc.