Phytocytokines belong to a category of small secreted peptides with signaling functions that play pivotal roles in diverse plant physiological processes. However, due to low levels of sequence conservation across plant species and poorly understood biological functions, the accurate detection and annotation of corresponding genes is challenging. The availability of a high-quality apple (Malus domestica) genome has enabled the exploration of five phytocytokine gene families, selected on the basis of their altered expression profiles in response to biotic stresses. These include phytosulfokine, inflorescence deficient in abscission/-like, pathogen-associated molecular pattern induced secreted peptide, plant peptide containing sulfated tyrosine, and C-terminally encoded peptide. The genes encoding the precursors of these five families of signaling peptides were identified using a customized bioinformatics protocol combining genome mining, homology searches, and peptide motif detection. Transcriptomic analyses showed that these peptides were deregulated in response to Erwinia amylovora, the causal agent of fire blight in pome fruit trees, and in response to a chemical elicitor (acibenzolar-S-methyl). Finally, gene family evolution and the orthology relationships with Arabidopsis thaliana homologs were investigated.
© 2024 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.