Light energy conversion often relies on photosensitizers with long-lived excited states, which are mostly made of precious metals such as ruthenium or iridium. Photoactive complexes based on highly abundant iron seem attractive for sustainable energy conversion, but this remains very challenging due to the short excited state lifetimes of the current iron complexes. This study shows that a luminescent Fe(III) complex sensitizes triplet-triplet annihilation upconversion with anthracene derivatives via underexplored doublet-triplet energy transfer, which is assisted by preassociation between the photosensitizer and the annihilator. In the presence of an organic mediator, the green-to-blue upconversion efficiency ΦUC with 9,10-diphenylanthracene (DPA) as the annihilator achieves a 6-fold enhancement to ∼0.2% in aerated solution at room temperature. The singlet excited state of DPA, accessed via photon upconversion in the Fe(III)/DPA pair, allows efficient photoredox catalytic radical polymerization of acrylate monomers in a spatially controlled manner, whereas this process is kinetically hindered with the prompt DPA. Our study provides a new strategy of using low-cost iron and low-energy visible light for efficient polymer synthesis, which is a significant step for both fundamental research and future applications.