Curcumin, a well-known bioactive component, has profound effects against colon cancer. However, the limitations are poor systemic absorption, off-target distribution, chemical instability, short half-life, and less concentration reaching tumor tissues. Several drug delivery systems have been evaluated so far to deliver effective concentrations of curcumin to the malignant tissues. This review aims to explore the role of smart polymers in overcoming limitations in curcumin delivery against colon cancer. Literature of the past 10 years was collected from Scopus, PubMed/Medline, Google Scholar, and Science Direct using specific keywords. Several preclinical and clinical studies of curcumin against colon cancer with the inclusion of smart polymers were screened using keywords like "FDA-approved biomaterials," "stimuli-responsive polymer," "smart biomaterial," and so forth. Smart polymer phrase is used to describe all the mentioned polymers in the manuscript. Stimuli-responsive polymers, including poly-lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), Eudragit, cyclodextrin, and chitosan, have emerged as promising candidates for curcumin delivery against colon cancer. These polymers facilitate controlled drug release in response to stimuli such as temperature, pH, and enzymes, while offering biocompatibility, biodegradability, and safety. The five selected FDA-approved smart polymers exhibit the potential for enhancing curcumin delivery against colon cancer.
Keywords: FDA‐approved polymers; colon cancer; curcumin; smart polymers; stimuli‐responsive polymers.
© 2024 John Wiley & Sons Ltd.