Finding of antibiotic compounds pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro and Cyclo(prolyl-tyrosyl) isolated from the degradation of epoxy

Environ Technol. 2024 Dec 11:1-16. doi: 10.1080/09593330.2024.2419560. Online ahead of print.

Abstract

The investigation focused on the endophytic gram-positive microbial isolate KARE_P3, capable of degrading epoxy resin materials. This isolate produced bioactive secondary metabolic molecules with potent inhibitory effects against Staphylococcus aureus, Microbial Type Culture Collection and GenBank (MTCC 96). The study examined microbial growth and degradation mechanisms at various time points, with samples collected on the 35th and 70th days of fermentation. Three different solvents were used for extraction, and the crude metabolite was analysed using Thin Layer Chromatography (TLC), Gas Chromatography - Mass Spectrophotometry (GC-MS), Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). These analyses revealed numerous secondary metabolites that help microbes adapt to changing environments. Further characterisation using bioautography and GC-MS identified 71 compounds, with 3-5 showing positive results. Important findings include compounds such as pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro 98% and Cyclo(prolyl-tyrosyl), which have diverse pharmaceutical applications. Antibacterial efficiency was studied using an in silico model, showing higher binding energy and inhibition rates of pyrrolo[1,2-a]pyrazine-1,4-dione and Cyclo(prolyl-tyrosyl) against Candida albicans compared to Staphylococcus epidermis. Challenges remain in the efficient sorting, recycling, and recovery of epoxy materials, crucial for future biotechnological progress.

Keywords: Epoxy resin; GCMS; TLC; bioautography; pyrrolopyrazine.