Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from nasopharyngeal mucosa. Anoikis, a form of programmed cell death induced by detachment from the extracellular matrix, normally prevents metastasis. Resistance to anoikis in cancer cells can enhance their metastatic potential. This study identifies anoikis-related genes (ARGs) associated with NPC to elucidate tumorigenesis mechanisms. Analysis of the GSE12452 dataset from GEO revealed 77 differentially expressed ARGs in NPC tissues. GO and KEGG analyses highlighted significant enrichment in apoptosis-related pathways. A PPI network identified MYC, FN1, BRCA1, and FGF2 as Hub genes. Correlation analysis showed MYC positively correlated with activated dendritic cells (p < 0.01) but negatively with naive CD4 T cells (p < 0.001). FN1 was positively correlated with activated dendritic cells (p < 0.01) and negatively with M1 macrophages (p < 0.05). FGF2 negatively correlated with naive CD4 T cells (p < 0.001), while BRCA1 was positively correlated with eosinophils (p < 0.01). GSVA and GSEA indicated that MYC, FN1, BRCA1, and FGF2 were significantly enriched in cell cycle and DNA replication pathways. Immunohistochemistry and qPCR of 50 NPC samples confirmed the overexpression of these genes. Knockdown of MYC, FN1, BRCA1, and FGF2 led to increased tumor cell malignancy, with statistical significance (p < 0.05). This study identifies MYC, FN1, BRCA1, and FGF2 as anoikis-related genes (ARGs) with significant regulatory roles in nasopharyngeal carcinoma (NPC). These ARGs are found to be involved in the development and progression of NPC, suggesting their potential as therapeutic targets for this cancer.
Keywords: Anoikis; Invasion; Metastasis; Nasopharyngeal carcinoma; Tumor microenvironment.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.