Physiotherapy has significantly evolved since its inception in the late 19th century, expanding into various specializations such as sports, neurology, and wound care. Its primary goal is to restore or enhance bodily functions through therapeutic interventions, aiding in conditions ranging from injuries to chronic pain. Tissue recovery, which involves repair and regeneration, is a critical aspect of physiotherapy. This natural process is influenced by factors like inflammation and injury severity. Nanotechnology, a relatively recent advancement, has transformed medicine, including wound care, through innovations in drug delivery, diagnostics, and anti-inflammatory treatments. Nanoparticles, owing to their small size and enhanced bioavailability, play a crucial role in improving drug delivery, increasing the efficacy of treatments, and promoting faster recovery. In the context of tissue healing, nanoparticles aid in cell proliferation, inflammation control, and scar reduction, among other therapeutic benefits. They are increasingly used in physiotherapy applications, to support tissue regeneration and inflammation management. This review examines the role of nanoparticles in physiotherapy, with a focus on their application in wound healing, muscle recovery, and inflammation control. It discusses various in-vitro and in-vivo studies that have explored the therapeutic potential of nanoparticles in these domains, providing insights into their mechanisms of action and effectiveness in promoting tissue regeneration and managing inflammation in physiotherapy settings.
Keywords: inflammation; nanoparticles; pain management; physiotherapy; tissue recovery.
Copyright © 2024, Cardoza et al.