Genome-wide association studies (GWAS) are an important tool for the study of complex disease genetics. Decisions regarding the quality control (QC) procedures employed as part of a GWAS can have important implications on the results and their biological interpretation. Many GWAS have been conducted predominantly in cohorts of European ancestry, but many initiatives aim to increase the representation of diverse ancestries in genetic studies. The question of how these data should be combined and the consequences that genetic variation across ancestry groups might have on GWAS results warrants further investigation. In this study, we focus on several commonly used methods for combining genetic data across diverse ancestry groups and the impact these decisions have on the outcome of GWAS summary statistics. We ran GWAS on two binary phenotypes using ancestry-specific, multi-ancestry mega-analysis, and meta-analysis approaches. We found that while multi-ancestry mega-analysis and meta-analysis approaches can aid in identifying signals shared across ancestries, they can diminish the signal of ancestry-specific associations and modify their effect sizes. These results demonstrate the potential impact on downstream post-GWAS analyses and follow-up studies. Decisions regarding how the genetic data are combined has the potential to mask important findings that might serve individuals of ancestries that have been historically underrepresented in genetic studies. New methods that consider ancestry-specific variants in conjunction with the shared variants need to be developed.