Background: Patients with brain damage often require mechanical ventilation. Although lung-protective ventilation is recommended, the application of increased positive end-expiratory pressure (PEEP) has been associated with elevated intracranial pressure (ICP) due to altered cerebral venous return. This study investigates the effects of flow-controlled ventilation (FCV) using negative end-expiratory pressures (NEEP), on cerebral hemodynamics in a swine model of intracranial hypertension.
Methods: A model of intracranial hypertension involving bilateral trepan bolt holes was performed in 14 pigs. Pressure-controlled volume-guaranteed ventilation (PCV-VG) with PEEP and FCV using PEEP and then NEEP were applied. Intracranial pressure and oxygenation, as well as systemic hemodynamics and gas exchange parameters, were continuously monitored. Data were collected at baseline and at varying PEEP levels for both PCV-VG and FCV ventilation modalities. Following this, FCV ventilation and NEEP levels of -3, -6 and -9 cmH2O were applied.
Results: ICP remained stable with low PEEP levels, but significantly decreased with NEEP. Lower ICP following NEEP improved cerebral perfusion pressure and cerebral tissue oxygenation (p < 0.05 for all). FCV with NEEP at EEP-6 and EEP-9 significantly improved cardiac output and mean arterial pressure (MAP), compared to PCV-VG and FCV using PEEP (p < 0.05, respectively). There were no significant differences in gas exchange parameters between modalities (PCV-VG vs FCV), and between the application of PEEP or NEEP. No significant correlations were observed between ΔICP and ΔMAP.
Conclusion: The application of FCV with NEEP appears to be a safe ventilation mode and offers an additional tool for controlling severe intracranial pressure episodes. These findings warrant validation in future studies and may lead to important potential applications in clinical practice.
Keywords: Cerebral hemodynamics; Flow-controlled ventilation; Intracranial hypertension; Mechanical ventilation; Negative end-expiratory pressure; Positive end-expiratory pressure.
© 2024. The Author(s).