Myocardial infarction (MI) is a leading cause of mortality worldwide, contributing significantly to long-term cardiac dysfunction and heart failure. Effective therapeutic strategies are urgently needed to mitigate the extensive damage caused by MI and subsequent ischemia-reperfusion (I/R) injury. This study investigates the role of the Chemokine receptor 2 (CCR2) in regulating NLRP3-dependent cardiomyocyte pyroptosis following myocardial ischemia-reperfusion (MIR), elucidating its molecular mechanisms. A myocardial ischemia-reperfusion model was established using 124 Sprague-Dawley rats by ligating the left coronary artery, inducing 30 min of ischemia. Following ischemia, RS504393, a selective CCR2 antagonist, was administered intraperitoneally one hour after reperfusion. To further explore the underlying mechanisms, the NF-κB pathway agonist Phorbol 12-myristate 13-acetate (PMA) was administered 1 h post-MIR. The results showed a marked increase in CCR2 expression in the heart, peaking on the first day of reperfusion. Treatment with RS504393 significantly improved short-term cardiac function and reduced myocardial infarction size, decreased myocardial pyroptosis and suppressed the expression of NLRP3, GSDMD, Caspase-1, IL-1β, and IL-18 through inhibition of the NF-κB signaling pathway. This effect was reversed with the administration of PMA. In summary, the inhibition of CCR2 shows potential in mitigating myocardial injury following MIR by modulating the NF-κB signaling pathway. These findings highlight CCR2 as a promising therapeutic target for myocardial ischemia-reperfusion injury.
Keywords: CCR2; Myocardial ischemia–reperfusion; NF-κB pathway; NLRP3; Pyroptosis.
Copyright © 2024 Elsevier B.V. All rights reserved.