Acinetobacter baumannii (A. baumannii) is a prominent nosocomial pathogen, posing a significant threat to public health. Urgent efforts are required to develop a safe and effective vaccine. Bacterial ghosts (BGs), comprising empty bacterial cell envelopes, offer a promising platform for vaccine adjuvant development. In the present study, Klebsiella pneumoniae (K. pneumoniae, KP) ghosts were generated via PhiX-174 lysis gene E-mediated inactivation. The present study results demonstrated that KP ghosts greatly promoted maturation and activation of BMDCs by upregulating the expression of surface molecules (CD40, CD80, CD86 and MHCII) and improving the secretion of cytokines (IL-1β, TNF-α and IL-12p70). In addition, to assess the immunogenicity and protective efficacy of the vaccine candidate, C57BL/6 mice were immunized with either A. baumannii OmpA or A. baumannii OmpA plus KP ghosts. The results showed that OmpA plus KP ghosts elicited higher levels of specific IgG antibody responses compared to OmpA alone. Furthermore, OmpA plus KP ghosts also increased lymphocyte proliferation and expression of the early activation marker CD69 on T cells, augmented frequency of central memory T cells (TCM) and IFN-γ+CD4+ T cells with production of increased IFN-γ in response to OmpA stimulation, as compared to OmpA alone. Furthermore, post-challenge with A. baumannii, mice immunized with OmpA plus KP ghosts exhibit a higher survival rate and lower bacterial loads in the spleen and lungs compared to those immunized with OmpA alone. In conclusion, these findings underscore the potential of KP ghosts as a candidate vaccine formulation or immunomodulators for designing a novel vaccine against A. baumannii infection.
Keywords: A. baumannii; Immune responses; K. pneumoniae ghosts; Vaccine.
Copyright © 2024 Elsevier Ltd. All rights reserved.