Mayaro virus (MAYV) is an emerging mosquito-borne viral pathogen whose infection results in arthritogenic disease. Despite ongoing research efforts, MAYV biology is largely unknown. Physical virology can assess MAYV nanoparticle metastability, assembly/disassembly, and polymorphism, allowing us to understand virion architecture and dynamics. Here, we employ atomic force microscopy (AFM) and surface enhancement Raman spectroscopy (SERS) to assess MAYV nanomechanical properties, including maps of adhesion force and Young's modulus on individual viral particles. We established topographic maps of MAYV in two and three dimensions, revealing the three-dimensional arrangement and distribution of charges on viral spikes at the virus surface. Furthermore, the organization of the densely packaged RNA, which affords the viral particle exceptional mechanical resistance compared to chikungunya (CHIKV), was observed using MAYV adsorption patterns. The vibrational signature of MAYV particles differs from CHIKV, with more intense protein modes matching the distribution of E1/E2 dimers and the nucleocapsid, which are well structured and suggestive of mechanical strength.
© 2024 The Authors. Published by American Chemical Society.