Using New Technologies to Analyze Gut Microbiota and Predict Cancer Risk

Cells. 2024 Dec 1;13(23):1987. doi: 10.3390/cells13231987.

Abstract

The gut microbiota significantly impacts human health, influencing metabolism, immunological responses, and disease prevention. Dysbiosis, or microbial imbalance, is linked to various diseases, including cancer. It is crucial to preserve a healthy microbiome since pathogenic bacteria, such as Escherichia coli and Fusobacterium nucleatum, can cause inflammation and cancer. These pathways can lead to the formation of tumors. Recent advancements in high-throughput sequencing, metagenomics, and machine learning have revolutionized our understanding of the role of gut microbiota in cancer risk prediction. Early detection is made easier by machine learning algorithms that improve the categorization of cancer kinds based on microbiological data. Additionally, the investigation of the microbiome has been transformed by next-generation sequencing (NGS), which has made it possible to fully profile both cultivable and non-cultivable bacteria and to understand their roles in connection with cancer. Among the uses of NGS are the detection of microbial fingerprints connected to treatment results and the investigation of metabolic pathways implicated in the development of cancer. The combination of NGS with machine learning opens up new possibilities for creating customized medicine by enabling the development of diagnostic tools and treatments that are specific to each patient's microbiome profile, even in the face of obstacles like data complexity. Multi-omics studies reveal microbial interactions, biomarkers for cancer detection, and gut microbiota's impact on cancer progression, underscoring the need for further research on microbiome-based cancer prevention and therapy.

Keywords: dysbiosis; metabolomics; metagenomics; microbiome; next-generation sequencing.

Publication types

  • Review

MeSH terms

  • Gastrointestinal Microbiome*
  • High-Throughput Nucleotide Sequencing / methods
  • Humans
  • Machine Learning
  • Metagenomics / methods
  • Neoplasms* / microbiology

Grants and funding

Valentyn Oksenych was a recipient of the following grants: the Research Council of Norway Young Talent Investigator grant (#249774); the Liaison Committee for Education, Research, and Innovation in Central Norway (#13477; #38811); the Norwegian Cancer Society (#182355); the Research Council of Norway FRIMEDBIO grants (#270491 and #291217); The Outstanding Academic Fellow Program at NTNU (2017–2021); and Karolinska Institutet Stiftelser och Fonder (#2020-02155).