Automated Pipeline for Robust Cat Activity Detection Based on Deep Learning and Wearable Sensor Data

Sensors (Basel). 2024 Nov 21;24(23):7436. doi: 10.3390/s24237436.

Abstract

The health, safety, and well-being of household pets such as cats has become a challenging task in previous years. To estimate a cat's behavior, objective observations of both the frequency and variability of specific behavior traits are required, which might be difficult to come by in a cat's ordinary life. There is very little research on cat activity and cat disease analysis based on real-time data. Although previous studies have made progress, several key questions still need addressing: What types of data are best suited for accurately detecting activity patterns? Where should sensors be strategically placed to ensure precise data collection, and how can the system be effectively automated for seamless operation? This study addresses these questions by pointing out whether the cat should be equipped with a sensor, and how the activity detection system can be automated. Magnetic, motion, vision, audio, and location sensors are among the sensors used in the machine learning experiment. In this study, we collect data using three types of differentiable and realistic wearable sensors, namely, an accelerometer, a gyroscope, and a magnetometer. Therefore, this study aims to employ cat activity detection techniques to combine data from acceleration, motion, and magnetic sensors, such as accelerometers, gyroscopes, and magnetometers, respectively, to recognize routine cat activity. Data collecting, data processing, data fusion, and artificial intelligence approaches are all part of the system established in this study. We focus on One-Dimensional Convolutional Neural Networks (1D-CNNs) in our research, to recognize cat activity modeling for detection and classification. Such 1D-CNNs have recently emerged as a cutting-edge approach for signal processing-based systems such as sensor-based pet and human health monitoring systems, anomaly identification in manufacturing, and in other areas. Our study culminates in the development of an automated system for robust pet (cat) activity analysis using artificial intelligence techniques, featuring a 1D-CNN-based approach. In this experimental research, the 1D-CNN approach is evaluated using training and validation sets. The approach achieved a satisfactory accuracy of 98.9% while detecting the activity useful for cat well-being.

Keywords: CNN; activity detection; biosensors; deep learning; pet activity.

MeSH terms

  • Accelerometry / instrumentation
  • Accelerometry / methods
  • Animals
  • Behavior, Animal / physiology
  • Cats
  • Deep Learning*
  • Humans
  • Neural Networks, Computer
  • Wearable Electronic Devices*