This paper introduces a comprehensive dataset of spectral-domain optical coherence tomography (SD-OCT) images of human eyes affected by paracentral acute middle maculopathy (PAMM). Acquired with an SD-OCT device (Optovue, Fremont, California, USA), the dataset includes 133 OCT images of lesions. Each image is paired with a corresponding YOLO label in TXT format, representing manually annotated lesion regions of PAMM, created with the assistance of ophthalmologists. This dataset is invaluable for developing and evaluating automatic algorithms for diagnosing PAMM lesions. By providing detailed annotations and high-quality images, it facilitates advancements in understanding the morphology, progression, and potential treatments of PAMM. Furthermore, it supports the improvement of diagnostic accuracy and the development of targeted therapeutic interventions for retinal diseases. This resource addresses a significant gap in the availability of public datasets focused on PAMM lesions, promoting further research in automated intelligent analysis systems for retinal OCT images.
Keywords: Anomaly detection; Bounding box annotation; Ophthalmology; Retinal disease.
© 2024 The Authors.