Photoacoustic tomography, a novel non-invasive imaging modality, combines the principles of optical and acoustic imaging for use in biomedical applications. In scenarios where photoacoustic signal acquisition is insufficient due to sparse-view sampling, conventional direct reconstruction methods significantly degrade image resolution and generate numerous artifacts. To mitigate these constraints, a novel sinogram-domain priors guided extremely sparse-view reconstruction method for photoacoustic tomography boosted by enhanced diffusion model is proposed. The model learns prior information from the data distribution of sinograms under full-ring, 512-projections. In iterative reconstruction, the prior information serves as a constraint in least-squares optimization, facilitating convergence towards more plausible solutions. The performance of the method is evaluated using blood vessel simulation, phantoms, and in vivo experimental data. Subsequently, the transformation of the reconstructed sinograms into the image domain is achieved through the delay-and-sum method, enabling a thorough assessment of the proposed method. The results show that the proposed method demonstrates superior performance compared to the U-Net method, yielding images of markedly higher quality. Notably, for in vivo data under 32 projections, the sinogram structural similarity improved by ∼21 % over U-Net, and the image structural similarity increased by ∼51 % and ∼84 % compared to U-Net and delay-and-sum methods, respectively. The reconstruction in the sinogram domain for photoacoustic tomography enhances sparse-view imaging capabilities, potentially expanding the applications of photoacoustic tomography.
Keywords: Diffusion models; Non-invasive imaging techniques; Photoacoustic tomography; Reconstructions; Sinogram domains; Sparse-view.
© 2024 The Authors.