Super-resolution (SR) of magnetic resonance imaging (MRI) is gaining increasing attention for being able to provide detailed anatomical information. However, current SR methods often use the complex convolutional network for feature extraction, which is difficult to train and not suitable for limited computation resources in the medical scenario. To tackle these bottlenecks, we propose a multi-distillation residual network (MDRN) for more differential feature refinement, which has a superior trade-off between reconstruction accuracy and computation cost. Specifically, a novel feature multi-distillation residual block with a contrast-aware channel attention module was designed to make the residual features more focused on low-vision information, which maximizes the power of MDRN. Comprehensive experiments demonstrate the superiority of our MDRN over state-of-the-art methods in reconstruction quality and efficiency. Our method outperforms other existing methods in peak signal-noise ratio by up to 0.44-1.82 dB in 4× scale when GPU memory and runtime are lower than in other SR methods. The source code will be available at https://github.com/Jennieyy/MDRN.
Keywords: MRI reconstruction; Super-resolution; feature distillation; medical image processing.