Amplicon panels using genotyping by sequencing methods are now common, but have focused on characterizing SNP markers. We investigate how microhaplotype (MH) discovery within a recently developed Pacific oyster (Magallana gigas) amplicon panel could increase the statistical power for relationship assignment. Trios (offspring and two parents) from three populations in a newly established breeding program were genotyped on a 592 locus panel. After processing, 92% of retained amplicons contained polymorphic MH variants and 85% of monomorphic SNP markers contained MH variation. The increased allelic richness resulted in substantially improved power for relationship assignment with much lower estimated false positive rates. No substantive differences in assignment accuracy occurred between SNP and MH datasets, but using MHs increased the separation in log-likelihood values between true parents and highly related potential parents (aunts and uncles). A high number of Mendelian incompatibilities among trios were observed, likely due to null alleles. Further development of a MH panel, including removing loci with high rates of null alleles, would enable high-throughput genotyping by reducing panel size and therefore cost for Pacific oyster research and breeding programs.
Keywords: amplicon sequencing; genotyping; kinship; parentage assignment; shellfish.
Published by Oxford University Press on behalf of The Genetics Society of America 2024.