Objective: To develop and validate a machine learning model incorporating dietary antioxidants to predict cardiovascular disease (CVD)-cancer comorbidity and to elucidate the role of antioxidants in disease prediction.
Methods: Data were sourced from the National Health and Nutrition Examination Survey. Antioxidants, including vitamins, minerals, and polyphenols, were selected as key features. Additionally, demographic, lifestyle, and health condition features were incorporated to improve model accuracy. Feature preprocessing included removing collinear features, addressing class imbalance, and normalizing data. Models constructed within the mlr3 framework included recursive partitioning and regression trees, random forest, kernel k-nearest neighbors, naïve bayes, and light gradient boosting machine (LightGBM). Benchmarking provided a systematic approach to evaluating and comparing model performance. SHapley Additive exPlanation (SHAP) values were calculated to determine the prediction role of each feature in the model with the highest predictive performance.
Results: This analysis included 10,064 participants, with 353 identified as having comorbid CVD and cancer. After excluding collinear features, the machine learning model retained 29 dietary antioxidant features and 9 baseline features. LightGBM achieved the highest predictive accuracy at 87.9 %, a classification error rate of 12.1 %, and the top area under the receiver operating characteristic curve (0.951) and the precision-recall curve (0.930). LightGBM also demonstrated balanced sensitivity and specificity, both close to 88 %. SHAP analysis indicated that naringenin, magnesium, theaflavin, kaempferol, hesperetin, selenium, malvidin, and vitamin C were the most influential contributors.
Conclusion: LightGBM exhibited the best performance for predicting CVD-cancer comorbidity. SHAP values highlighted the importance of antioxidants, with naringenin and magnesium emerging as primary factors in this model.
Keywords: Cancer; Cardiovascular disease; Dietary antioxidants; Machine learning; SHAP.
Copyright © 2024. Published by Elsevier B.V.