Poplar tree growth is frequently hindered by environmental stressors, particularly soil salinization. Enhancing salt tolerance is essential for improving their adaptability and biomass under these conditions. The Stress-Associated Protein (SAP) family, characterized by A20/AN1 zinc finger domains, plays a crucial role in plants' tolerance to abiotic stress. However, functional investigations on SAP proteins in poplar are limited. In our study, we identified 19 SAP members in poplar, distributed unevenly across ten chromosomes and classified them into two major groups based on phylogenetic relationship and structure characteristics. Notably, only three segmental duplications were found, while no tandem duplications were detected. The PagSAP9 gene from Populus alba x P. glandulosa, featured both A20 and AN1 domains, was successfully characterized and localized to both cytoplasm and nucleus. It was predominantly expressed in roots and leaves and showed significantly upregulation under salt stress. And the overexpressing PagSAP9 transgenic poplars enhanced the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), alongside reduced malondialdehyde (MDA) content. Additionally, DAB and NBT histological stainings further confirmed the positive effects of PagSAP9 gene. Collectively, these findings highlight the potential of the PagSAP9 gene to improve salt tolerance in poplar, emphasizing the broader applicability of SAP genes in plant stress resistance and providing valuable genetic resources for developing resilient plant varieties.
Keywords: PagSAP9; Poplar; The Stress-Associated Proteins (SAPs); comprehensive analysis; salt tolerance; transgenic plants.
Copyright © 2024. Published by Elsevier Ltd.