Copper (cu) is an essential micronutrient required for numerous metabolic processes. It plays a crucial role in cellular respiration by participating in the electron transport chain and facilitating numerous biological reactions. Various diseases, including cancer, demonstrate localized elevation of copper levels and/or alterations in the overall distribution of copper. Modulating local or systemic copper levels as a novel therapeutic approach for treating and ameliorating diseases has emerged as a prominent trend in disease management, particularly in the realm of cancer therapy, which is currently under investigation. The objective of this review is to offer a thorough examination of copper metabolism in both physiological and pathological contexts. Specifically, it delves into how copper ions can effectively target and stimulate tumor cell death via the process known as cuproptosis in cancer patients. Furthermore, this review explores the utilization of three categories of anticancer medications (copper ion carriers, copper complexes, and copper chelating agents) pertaining to copper metabolism within the realm of cancer therapy, elucidating on the distinct mechanisms through which they exert their effects.
Keywords: Apoptosis; Cancer; Copper; Copper ionophores; Cuproptosis.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.