Synthesis and Properties of Thermostable Energetic Benzotriazines

J Org Chem. 2024 Dec 20. doi: 10.1021/acs.joc.4c02292. Online ahead of print.

Abstract

In an effort to balance energy and molecular stability effectively, several energetic compounds (3-6) based on benzotriazine were designed and synthesized. These structures were comprehensively characterized using NMR, IR, and elemental analysis, with compounds 3, 5, and 6 further confirmed by single-crystal X-ray diffraction. Notably, 3-amino-5,7-dinitrobenzo[e][1,2,4]triazine 1-oxide (5), which features a face-to-face crystal stacking arrangement, exhibits good detonation velocity (Dv = 8050 m/s), a high thermal decomposition temperature (Td = 290 °C), and low sensitivities (impact sensitivity >40 J, friction sensitivity >360 N). The preparation of compound 5 was further optimized by using a commercially available flow microreactor system, achieving an improved yield of 62%. Overall, the comprehensive properties of compound 5 make it a promising candidate for heat-resistant explosive applications.