Simulation analysis of 35 MeV high-power electron accelerator driven white neutron source target

Appl Radiat Isot. 2024 Dec 15:217:111632. doi: 10.1016/j.apradiso.2024.111632. Online ahead of print.

Abstract

The white neutron source driven by an electron accelerator utilizes a pulsed electron beam to bombard a target, producing neutrons through photoneutron reactions. The white neutron source of photoneutron reaction has advantages such as compact structure, low cost, capability of generating ultra-short pulse, and wide applications in the resonance energy region, effectively complementing reactor neutron sources and spallation neutron sources. The development of high-current, high-power electron accelerator-driven white neutron sources is of significant importance for neutron science research and nuclear technology applications. However, constructing such a strong-current, high-power electron accelerator-driven white neutron source is complex, and a lot of theoretical simulation work is needed in the early stage to guide the obtaining of a set of optimal source parameters, as well as thermal analysis of the electron bombardment to address target cooling issues. Therefore, in this paper, Monte Carlo algorithm is used to comprehensively simulate and optimize the target station of 35 MeV/ 2 mA@ 70 kW electron accelerator driven white neutron source. Including the structural design of the target, the study of neutron physics parameters, distribution of electron energy deposition, and distribution of radiation damage caused by electrons. In addition, thermal analysis of the target is conducted using the finite element analysis software ANSYS. The research results of this paper will provide important references and bases for guiding the engineering design of high-power electron accelerator-driven white neutron source target stations.

Keywords: Monte Carlo algorithm; Neutron characteristics; Photoneutron source; Tungsten target.