Enhancement of nutritional quality of chickpea flour by solid-state fermentation for improvement of in vitro antioxidant activity and protein digestibility

Food Chem. 2024 Dec 13:468:142418. doi: 10.1016/j.foodchem.2024.142418. Online ahead of print.

Abstract

The nutritional properties, anti-nutritional factors, and in vitro digestion characteristics of chickpeas after solid-state fermentation (SSF) with autochthonous microorganisms were investigated. Two strains (P.pentosaceus LFSBB12 & P.pentosaceus LFSBB13) selected from the chickpea substrate were chosen as starter cultures for SSF based on their comprehensive assessment of tolerance, proteolytic activity and α-Galactoside digestion. The results showed phytic acid content decreased dramatically (47.24%) in P.pentosaceus LFSBB12 group compared with that in the unfermented chickpea flour (UCF). Total phenolic and flavonoid of chickpeas both increased approximately threefold in fermentation group. After digestion, the increase in γ-aminobutyric acid, protocatechuic acid and p-hydroxybenzoic acid content exhibited significant positive correlations with the enhancement of in vitro antioxidant activity. Protein digestibility reached to 86.22% (P.pentosaceus LFSBB12) and 82.41% (P.pentosaceus LFSBB13) compared to UCF (74.59%). Fermentation samples gained higher proportion of small peptides and functional bioactive peptides. Therefore, SSF with autochthonous microorganisms could enhance nutritional quality of chickpeas.

Keywords: Autochthonous microorganisms; Chickpea flour; In vitro antioxidant activity; Protein digestibility; Solid-state fermentation.