Nuclear lipids play roles in regulatory processes such as signaling, transcriptional regulation, and DNA repair. In this report, we demonstrate that nuclear lipids may contribute to Ki-67-regulated chromosome integrity during mitosis. In COS-7 cells, nuclear lipids are enriched at the perichromosomal layer and excluded from intrachromosomal regions during early mitosis, but are then detected in intrachromosomal regions during late mitosis, as revealed by TT-ExM, an improved expansion microscopy technique that enables high-sensitivity, super-resolution imaging of proteins, lipids, and nuclear DNA. The nuclear non-histone protein Ki-67 acts as a surfactant to form a repulsive molecular brush around fully condensed sister chromatids in early mitosis, preventing the diffusion or penetration of nuclear lipids into intrachromosomal regions. Ki-67 is phosphorylated during mitosis by cyclin-dependent kinase 1 (CDK1), the best-known master regulator of the cell cycle. Both Ki-67 knockdown and reduced Ki-67 phosphorylation by CDK1 inhibitors allow nuclear lipids to penetrate chromosomal regions. Thus, both Ki-67 protein level and phosphorylation status during mitosis appear to influence the perichromosomal distribution of nuclear lipids. Ki-67 knockdown and CDK1 inhibition also lead to uneven chromosome disjunction between daughter cells, highlighting the critical role of this regulatory mechanism in ensuring accurate chromosome segregation. Given that Ki-67 has been proposed to promote chromosome individualization and establish chromosome-cytoplasmic compartmentalization during open mitosis in vertebrates, our results reveal that nuclear lipid enrichment at the perichromosomal layer enhances Ki-67's ability to form a protective perichromosomal barrier (chromosome envelope), which is critical for correct chromosome segregation and maintenance of genome integrity during mitosis.
Keywords: Biotin-DHPE; Cell cycle; Cell cycle-dependent kinase 1; Expansion microscopy; Ki-67; Nuclear lipid; Perichromosomal layer; Phosphatidylserine; TT-ExM.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.