Magnetic chitosan-based materials with good adsorption-photocatalysis and magnetic properties have great prospect in wastewater treatment. In this paper, a floating magnetic molybdenum disulfide/NiFe2O4/chitosan integrated melamine sponges (m-MoS2/CS@MS) was fabricated using chitosan as absorbent and adhesive, MoS2 and NiFe2O4 as photocatalysts, and melamine sponge as support material. The m-MoS2/CS@MS has a rich light-water-air-material interaction interface and can float on the water surface. The light absorbance of m-MoS2/CS@MS had dramatically increased by 55.77 % with the introduction of MoS2 and NiFe2O4 nanoparticles. The m-MoS2/CS@MS can effectively remove Congo red dye at pH = 2-10 under different coexisting inorganic salts (Cl-, SO42-) and water matrices (ultrapure water, tap water, Lake water, and mineral water). The m-MoS2/CS@MS had excellent photocatalytic degradation ability, reaching a degradation rate of 98.88 % under simulated solar light irradiation. Furthermore, the m-MoS2/CS@MS composite exhibited excellent stability, convenient magnetic recycling performance, reusability and its suitability for dye wastewater treatment under different conditions. This research provided a new insight into the practical application of sustainable and clean chitosan-based materials.
Keywords: Chitosan; Congo red; Magnetic material; MoS(2); Photocatalyst.
Copyright © 2024. Published by Elsevier B.V.