Selenium-Enriched Aspergillus oryzae A02 Enhances Testicular Antioxidant Capacity in Mice by Regulating Intestinal Microbiota and Serum Metabolite

Biol Trace Elem Res. 2024 Dec 21. doi: 10.1007/s12011-024-04496-8. Online ahead of print.

Abstract

Selenium (Se) is a trace element that is essential for health. Organic Se created by Se-enriched microorganisms has the characteristics of low toxicity, high bioavailability, and regulation of physiological functions. Here, the regulatory effect of Se-enriched Aspergillus oryzae A02 on the reproductive function of male mice and its potential molecular mechanism was studied. Specifically, twenty-four male mice were randomly divided into a control group and a Se-enriched A. oryzae A02 (Nano-Se) (daily gavage of 0.5 mg/kg, dissolved in saline) for an 8-week experiment. The results showed that Nano-Se intervention did not affect body weight and testicular index, but increased sperm concentration and seminiferous epithelium height in experimental mice, indicating that Nano-Se has the potential to improve the reproductive performance of male mice. Mechanistically, Nano-Se intervention increased the levels of antioxidant-related indicators catalase (CAT) and glutathione peroxidase (GSH-Px) in mouse serum, and increased the relative mRNA expression of GSH-Px, heme oxygenase-1 (HO-1), and NADPH quinine oxidoreductase-1 (NQO-1) in testicular tissues. We identified 9,10,13-trihydroxyoctadecenoic acids (TriHOMEs), stearidonic acid and selenomethionine linked with alpha-linolenic acid metabolism, selenocompound metabolism, folate biosynthesis, ubiquinone, and other terpenoid-quinone biosynthesis and biosynthesis of cofactors. In addition, Nano-Se did not influence the fecal bacterial alpha and beta diversity (P > 0.05), but increased the abundance of the Actinobacteriota and Proteobacteria phyla and the Staphylococcus and Corynebacterium genera, and lowered the abundance of the Bacteroidota phylum and the Lactobacillus and norank_f_Muribaculaceae genera. Nano-Se is considered a novel and promising nutritional regulator to improve reproductive function.

Keywords: Male reproduction; Metabolomics; Mice; Microbiomics; Nano-Se.