Coral reefs are critical ecosystems, fostering biodiversity and sustaining the livelihoods of millions globally. Nonetheless, they confront escalating threats, with infectious diseases emerging as primary catalysts for extensive damage, surpassing the impacts of other human-induced stressors. Disease transmission via biotic factors, particularly during fish predation, is a crucial yet often overlooked pathway. While their feeding can spread infectious diseases through spores, it also controls the growth of macroalgae, a major competitor for space on the reef. Given this dual effect, the precise impact of fish on coral disease remains ambiguous and requires additional investigation. In this study, we addressed this gap for the first time by employing a mathematical model. Our analyses unveil intricate interactions between fish predation and coral health, revealing potential benefits and drawbacks for coral reef ecosystems. Coral survival hinges on a delicate balance of fish predation, with extremes (both low and high) offering some protection against disease outbreaks compared to moderate predation, which can cause sudden die-offs. More specifically, as fish predation intensifies, the ecosystem undergoes a tipping point, transitioning from a disease-dominated state to a healthier one. Moreover, the interplay between transmission rate and virulence in coral populations is significantly shaped by fish predation rates. Specifically, the threshold ratio of transmission to virulence, signalling a regime shift from a healthy to a disease-dominated state, exhibits a linear increase with fish predation rate. Overall, our findings emphasize the importance of considering biotic interactions in coral disease ecology and offer insights essential for effective reef conservation strategies.
Keywords: Conservation; Coral disease; Fish predation; Multistability; Tipping.
Copyright © 2024 Elsevier Ltd. All rights reserved.