Mechanism of differentiated and targeted catalysis in complex lipid system under lipase and lipoxygenase mediation

Food Chem. 2024 Dec 16:469:142503. doi: 10.1016/j.foodchem.2024.142503. Online ahead of print.

Abstract

The regulation of reaction rate differentiation, catalytic precursor differentiation, and end-product differentiation during enzyme-mediated reactions within complex lipid systems is a key area of research in flavor regulation. A multilayer lipid oxidation model, utilizing Plaice bone oil (PBO), lipase, and lipoxygenase, was employed to investigate oxidation differences between various lipids and corresponding flavor formation patterns. Lipase treatment resulted in higher levels of non‑oxygenated volatile compounds and saturated aldehydes, whereas lipoxygenase treatment increased oxygenated compounds, particularly (E)-2-hexenal, 1-penten-3-one, and 2-pentylfuran. The hydrolysis of triglycerides by lipase significantly raised the concentration of monounsaturated fatty acids. Lipoxygenase catalyzed the formation of position-specific oxidation products at the ω-6 carbon position of PUFAs, such as 15-hydroperoxy-EPA and 17-hydroperoxy-DHA. These enzymatic treatments altered the lipid profile, leading to distinct flavor formation patterns. This study provides valuable insights into the mechanisms underlying enzyme-mediated volatile substance variations in food.

Keywords: 15-hydroperoxy-EPA; 17-hydroperoxy-DHA; Hydrolysis; Lipid oxidation; Position-specific oxidation.