Liquid metals (LMs), as an emerging group of functional materials, possess the necessary conditions for dewetting. However, LM dewetting garnered grossly inadequate attention. Here, an intriguing phenomenon termed active corrosion-triggered dewetting (ACT-Dewetting) of LMs is reported. Distinct from traditional dewetting which mainly depends on physical treatments (e.g., laser irradiation, evaporation) for initiation, the ACT-Dewetting couples mechanics, chemistry, and physics, which enables gallium (Ga)-based and Ga-free (e.g., fusible alloy) LMs spread on sacrificial metals (e.g., Al, Mg) readily dewet into numerous microdroplets in seconds along with substrate corrosion and gas emission. This gives birth to a novel method for fabricating LM microdroplets. Besides, due to the consistent metallic luster of painted LMs on various substrates and selective corrosion of substrates, ACT-Dewetting is demonstrated as an effective information encryption method. With these proof-of-concept illustrations, it is anticipated this ACT-Dewetting strategy would facilitate more innovative studies of LMs.
Keywords: corrosion; dewetting; information encryption; liquid metal; microdroplet.
© 2024 Wiley‐VCH GmbH.