Thermodynamics and transport in molten chloride salts and their mixtures

Phys Chem Chem Phys. 2024 Dec 23. doi: 10.1039/d4cp04180a. Online ahead of print.

Abstract

Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids. Using recent developments in the theory of liquid thermophysical properties, we interpret our results on the basis of collective atomistic dynamics (phonons). We find that the properties of ionic liquids are well explained by their collective dynamics, as in simple liquids. In particular, we relate the decrease of heat capacity, viscosity, and thermal conductivity to the loss of transverse phonons from the liquid spectrum. We observe the singular dependence of the isochoric heat capacity on the mean free path of phonons, and the obeyance of the Stokes-Einstein equation relating the viscosity to the mass diffusion. The transport properties of mixtures are more complicated compared to simple liquids, however viscosity and thermal conductivity are well guided by fundamental bounds proposed recently. The kinematic viscosity and thermal diffusivity lie very close to one another and obey the theoretical fundamental bounds determined solely by fundamental physical constants. Our results show that recent advances in the theoretical physics of liquids are applicable to molten salts mixtures, and therefore that the evolution and interplay of properties common to all liquids may act as a guide to a deeper understanding of these mixtures.