The small molecule peptide ANXA114-26 inhibits ovarian cancer cell proliferation and reverses cisplatin resistance by binding to the formyl peptide receptors receptor

J Cell Commun Signal. 2024 Dec 19;19(1):e12058. doi: 10.1002/ccs3.12058. eCollection 2025 Mar.

Abstract

Chemo-resistance in ovarian cancer is currently a major obstacle to the treatment and recovery of ovarian cancer. Therefore, identifying factors associated with chemo-resistance in ovarian cancer may reverse chemo-sensitization. Using isobaric tags for relative and absolute quantitation (ITRAQ) technology, we found a small molecule peptide with annexin 1 (ANXA1) as a precursor protein. Then, we explored the effects and mechanisms of this small molecule peptide on the proliferation, apoptosis, and drug resistance of ovarian cancer resistant cells through CCK-8, EdU cell proliferation assay, Annexin V-FITC/PI assay, Western blot,qRT-PCR. ANXA114-26 was highly expressed in the serums of sensitive patients. ANXA114-26 promoted apoptosis of ovarian cancer cells and increased the sensitization of ovarian cancer cells to cisplatin. The ANXA114-26 and ANXA1 competitively bind formyl peptide receptors (FPR). ANXA114-26 decreased multidrug resistance-associated protein 1 (MRP1) expression in ovarian cancer cells through the FPR/Cyclin D1/NF-ĸBp65 pathway. We found a peptide derived named ANXA114-26 in the serum of ovarian cancer patients. It can reduce ovarian cancer cell proliferation and reduce MRP1 expression through the FPR/Cyclin D1/NF-ĸBp65 pathway.

Keywords: ANXA114‐26; FPR; NF‐ĸBp65; cisplatin resistance; cyclin D1; ovarian cancer.