Data-driven discovery of cell-type-directed network-correcting combination therapy for Alzheimer's disease

bioRxiv [Preprint]. 2024 Dec 13:2024.12.09.627436. doi: 10.1101/2024.12.09.627436.

Abstract

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by heterogeneous molecular changes across diverse cell types, posing significant challenges for treatment development. To address this, we introduced a cell-type-specific, multi-target drug discovery strategy grounded in human data and real-world evidence. This approach integrates single-cell transcriptomics, drug perturbation databases, and clinical records. Using this framework, letrozole and irinotecan were identified as a potential combination therapy, each targeting AD-related gene expression changes in neurons and glial cells, respectively. In an AD mouse model, this combination therapy significantly improved memory function and reduced AD-related pathologies compared to vehicle and single-drug treatments. Single-nuclei transcriptomic analysis confirmed that the therapy reversed disease-associated gene networks in a cell-type-specific manner. These results highlight the promise of cell-type-directed combination therapies in addressing multifactorial diseases like AD and lay the groundwork for precision medicine tailored to patient-specific transcriptomic and clinical profiles.

Publication types

  • Preprint