Atomically thin 2D materials present the potential for advancing membrane separations via a combination of high selectivity (from molecular sieving) and high permeance (due to atomic thinness). However, the creation of a high density of precise nanopores (narrow-size-distribution) over large areas in 2D materials remains challenging, and nonselective leakage from nanopore heterogeneity adversely impacts performance. Here, we demonstrate protein-enabled size-selective defect sealing (PDS) for atomically thin graphene membranes over centimeter scale areas by leveraging the size and reactivity of permeating proteins to preferentially seal larger nanopores (≥4 nm) while preserving a significant amount of smaller nanopores (via steric hindrance). Our defect-sealed nanoporous atomically thin membranes (NATMs) show stability up to ∼35 days during size-selective diffusive separations with a model dialysis biomolecule fluorescein isothiocyanate (FITC)-Ficoll 70 in phosphate buffer saline (PBS) solution as well as outperform state-of-the-art commercially available dialysis membranes (molecular-weight-cutoff ∼3.5-5 kDa and ∼8-10 kDa) with significantly higher permeance for smaller solutes KCl (∼0.66 nm) ∼5.1-6 × 10-5 ms-1 and vitamin B12 (B12, ∼1.5 nm) ∼2.8-4 × 10-6 ms-1 compared to small protein lysozyme (Lz, ∼4 nm) ∼4-6.4 × 10-8 m s-1, thereby allowing unprecedented selectivity for B12/Lz ∼70 and KCl/Lz ∼1280. Our work introduces proteins as nanoscale tools for size-selective defect sealing in atomically thin membranes to overcome persistent issues and advance separations for dialysis, protein desalting, small molecule separations/purification, and other bioprocesses.
Keywords: atomically thin membranes; graphene; highly selective membranes; nanoscale separations; protein-enabled defect sealing.