Highly Selective Construction of Unique Cyclic [4]Catenanes Induced by Multiple Noncovalent Interactions

Angew Chem Int Ed Engl. 2024 Dec 23:e202422444. doi: 10.1002/anie.202422444. Online ahead of print.

Abstract

The synthesis of high-ordered mechanically interlocked supramolecular structures is an extremely challenging topic. Only two linear [4]catenanes have been reported so far and there is no defined strategy to obtain cyclic [4]catenane. Herein, two unprecedented cyclic [4]catenanes, 1 and 2, were prepared in high yields. The syntheses rely on the strategic selection of naphthalenediimide (NDI) based Cp*Rh/Ir building blocks E1/E2 (Cp*=pentamethyl-cyclopentadienyl) and nonlinear diimidazole ligand precursor L1, exhibiting large conjugate plane, appropriate coordination angles, and freely rotating imidazole units, thereby enabling multiple π⋅⋅⋅π stacking interactions to maintain the supramolecular structures. The use of other Cp*Rh building blocks E3, E4 or E5 featuring slightly shorter metal-to-metal distances than E1/E2 and different chemical properties led to the formation of a complex 3 and two metallamacrocycles 4 or 5, respectively. The structures of these assemblies were confirmed by X-ray crystallographic analysis, ESI-TOF-MS and NMR spectroscopy. Complex 1, exhibiting a broad-band absorption in the UV/Vis to NIR regions and a remarkable photothermal conversion was thereafter used to build the new 1 membrane. The solar power-induced water steam generation performance of 1 membrane was investigated, reaching a value of 2.37 kg ⋅ m-2 ⋅ h-1, making it suitable for collection of fresh water via desalination and wastewater.

Keywords: [4]catenanes; interlocked supramolecular species; photothermal conversion; self-assembly; stacking interactions.