New modeling framework for describing the effects of landscape pattern changes on nutrient pollution transport

Sci Total Environ. 2024 Dec 24:959:178090. doi: 10.1016/j.scitotenv.2024.178090. Online ahead of print.

Abstract

Landscape pattern plays a crucial role in regulating hydrological and pollutant migration processes. However, there is a lack of quantitative tools to describe the nutrient pollution transport process under the influence of different landscape patterns. To fill this gap, this study presents a new modeling framework, namely the Landscape Pattern-Source Flow Sink model (LP-SFS). The model consists of three modules: nutrient pollution emission, land transport, and river transport. Each module is implemented using a separate calculation program. It characterizes the transport path of pollutants on landscape units conceptually and operationally and focuses on quantifying the blocking effect of grid-scale landscape units on nutrients. The framework takes the Luanhe River Basin in the North China Plain as an exemplary case. The simulation results of the new framework indicated that in regions predominantly occupied by forest and urban (FU), the intensity of terrestrial pollutant migration attained the highest level. In the slope zone ranging from 25 to 35°, owing to the relatively strong responsiveness of water flow and gravity to the slope, soil erosion is inclined to occur, thereby causing the intensity of terrestrial nutrient pollution transport in this slope zone to reach the maximum value of 4.55 kg/km2. Furthermore, in the elevation zone <700 m, urban and cultivated land was concentratedly distributed, which leads to more pollutants entering surface water bodies and increases the intensity of terrestrial migration of pollutants. The complex boundary shape of forestland and grassland in the watershed weakened the transport capacity of nutrients, resulting in pollutants remaining in the soil and being difficult to be transported to surface water bodies. This new method is applicable to large-scale watersheds with strong spatial heterogeneity and severe landscape fragmentation and can provide technical support for nutrient pollution control and optimization of land resource allocation in large-scale watersheds.

Keywords: Interception effect; Landscape pattern change; Nutrient pollution; Pollutant transport process; Watershed model.