Hereditary angioedema type 1 (HAE1) is a rare, genetically heterogeneous, and autosomal dominant disease. It is a highly variable, insidious, and potentially life-threatening condition, characterized by sudden local, often asymmetric, and episodic subcutaneous and submucosal swelling, caused by pathogenic molecular variants in the SERPING1 gene, which codes for C1-Inhibitor protein. This study performed the phenotypic and molecular characterization of a HAE1 cluster that includes the largest number of affected worldwide. A geographically HAE1 cluster was found in the northeast Colombian department of Boyaca, which accounts for four unrelated families, with 79 suspected to be affected members. Next-Generation Sequencing (NGS) was performed in 2 out of 4 families (Family 1 and Family 4), identifying the variants c.1420C>T and c.1238T>G, respectively. The latter corresponds to a novel mutation. For Families 2 and 3, the c.1417G>A variant was confirmed by Sanger sequencing. This variant had been previously reported to the patient prior to the beginning of this study. Using deep-learning methods, the structure of the C1-Inhibitor protein, p.Gln474* and p.Met413Arg was predicted, and we propose the molecular mechanism related to the etiology of the disease. Using Sanger sequencing, family segregation analysis was performed on 44 individuals belonging to the families analyzed. The identification of this cluster and its molecular analysis will allow the timely identification of new cases and the establishment of adequate treatment strategies. Our results establish the importance of performing population genetic studies in a multi-cluster region for genetic diseases.
Copyright: © 2024 Arias-Flórez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.