Purpose: Advancements in minimally invasive technologies to decrease postoperative morbidity and recovery times represent a large opportunity for mitral valve repair operations. However, current technologies are unable to replicate gold standard surgical neochord implantation.
Methods: We developed a novel neochordal repair device, Minimally Invasive Ventricular Anchoring Neochordoplasty (MIVAN), which operates via transcatheter, trans-septal anchoring to the posterior ventricular wall. We evaluated MIVAN in an ex vivo heart simulator and compared it with surgical neochordal repair and MitraClip using a prolapse model.
Results: Upon MIVAN repair of the model (n = 5), regurgitant fraction was reduced from 19.46 ± 1.77% to 7.30 ± 0.99% (p = 0.01). Surgical neochordal repair reduced regurgitant fraction to 5.65 ± 0.66%, but there was no significant difference between MIVAN and surgical repair (p = 0.22). Unpaired MitraClip repair had significantly higher regurgitant fraction of 11.9 ± 1.40%, compared with those of neochord (p < 0.01) and MIVAN (p = 0.03) repairs.
Conclusions: MIVAN represents a high-value opportunity for minimally invasive mitral valve repair. The benefits of the percutaneous, trans-septal approach for implantation on the posterior ventricular wall necessitate the expanded exploration of this device as a treatment alternative.
Keywords: Mitral valve; Neochord repair; Surgical device; Transcatheter.
© 2024. The Author(s) under exclusive licence to Biomedical Engineering Society.