Cholesterol dysregulation, disorder of neuronal membrane lipid packing, and lipid rafts lead to the synthesis and accumulation of toxic amyloid-β (Aβ), contributing to the development of Alzheimer's disease (AD). Our study shows that near-infrared (NIR) transcranial photobiomodulation therapy (tPBMT) can reduce Aβ load and restore the properties of neuronal plasma membrane, including Aβ production, bilayer order, rafts, lipid content, and Ca2+ channels during AD. Mice in the experiments were exposed to 808-nm LED for 1 h daily over 3 months. In the APOE transgenic model with cholesterol dysregulation, the cholesterol levels increased by 22 times, causing healthy neurons to produce toxic Aβ three times faster, increasing its load by five times. Consequently, Aβ disrupts the membrane bilayer and prompts the formation of lipid rafts and pores. NIR-tPBMT can nearly half attenuate Aβ load, restore membrane lipid order and rigidity, reduce the number of lipid rafts, modulate cholesterol synthesis, normalize Ca2+ influx by activated endocytosis, and reduce neuronal death. The Ca2+ influx induced by light does not cause excitotoxicity but modulates Ca2+/calmodulin signaling involved in AD mechanisms and cell viability. The transcriptome analysis of the brain cortex and hippocampus shows that light can downregulate Ca2+/calmodulin-dependent AD-risk genes BACE, PSEN, and APP, and normalize cholesterol homeostasis via the HMGCR, DHCR7, and INSIG1 genes. Additionally, light enhances neuron resistance to the endoplasmic reticulum stress via activating transcription factors of the unfolded protein response. Thus, red/NIR light could be promising in combating AD, restoring synaptic plasticity in degenerating neurons and reducing Aβ load.
Keywords: Amyloid load; Light therapy; Lipid membrane order; Lipid rafts; Transcranial photobiomodulation.
Copyright © 2024. Published by Elsevier B.V.