In recent years, postoperative tumor therapy with a suitable approach has been an important issue. Remodeling the tumor microenvironment and accelerating tissue repair can accelerate patients' surgical site recovery, reduce patient pain as well as prevent postoperative tumor recurrence. The shape non-adaptability, cytotoxicity, and non-degradability of some hydrogels still hinder the application of hydrogel-based drug delivery systems in postoperative recovery. Natural polysaccharides (e.g., chitosan, sodium alginate, and hyaluronic acid) are multifunctional compounds with biomimetic advantages to meet the growing demand for nontoxic, targeted therapeutic, and restorative preventive therapies. In this paper, we comprehensively and systematically investigated the synthesis methods, properties, and applications of natural polysaccharide hydrogel (NPH) delivery systems, as well as the mechanisms of remodeling the tumor microenvironment. We aim to provide insights into the design of NPH delivery systems. On this basis, future research directions for NPH delivery systems and their role in remodeling the tumor microenvironment and accelerating postoperative tumor therapy are proposed, and strategies for remodeling the tumor microenvironment using hydrogel delivery systems are discussed, as well as the latest research methods.
Keywords: Drug delivery systems; Natural polysaccharide hydrogel; Polysaccharide classification; Tissue repair mechanisms; Tumor treatment.
Copyright © 2024. Published by Elsevier B.V.