Modeling fibrous tissue for vascular fluid-structure interaction analysis poses significant challenges due to the lack of effective tools for preparing simulation data from medical images. This limitation hinders the physiologically realistic modeling of vasculature and its use in clinical settings. Leveraging an established lumen modeling strategy, we propose a comprehensive pipeline for generating thick-walled artery models. A specialized mesh generation procedure is developed to ensure mesh continuity across the lumen and wall interface. Exploiting the centerline information, a series of procedures are introduced for generating local basis vectors within the arterial wall. The procedures are tailored to handle thick-walled tissues where basis vectors may exhibit transmural variations. Additionally, we propose methods for accurately identifying the centerline in multi-branched vessels and bifurcating regions. These modeling approaches are algorithmically implementable, rendering them readily integrable into mainstream cardiovascular modeling software. The developed fiber generation method is evaluated against the strategy using linear elastostatics analysis, demonstrating that the proposed approach yields satisfactory fiber definitions in the considered benchmark. Finally, we examine the impact of anisotropic arterial wall models on the vascular fluid-structure interaction analysis through numerical examples, employing the neo-Hookean model for comparative purposes. The first case involves an idealized curved geometry, while the second studies an image-based abdominal aorta model. Our numerical results reveal that the deformation and stress distribution are critically related to the constitutive model of the wall, whereas hemodynamic factors are less sensitive to the wall model. This work paves the way for more accurate image-based vascular modeling and enhances the prediction of arterial behavior under physiologically realistic conditions.
Keywords: anisotropic material model; fluid–structure interaction; image‐based modeling; patient‐specific simulation; vascular biomechanics.
© 2024 John Wiley & Sons Ltd.