Oscillatory Motion of a Camphor Disk on a Water Phase with an Ionic Liquid Sensitive to Transition Metal Ions

J Phys Chem B. 2025 Jan 9;129(1):592-597. doi: 10.1021/acs.jpcb.4c07310. Epub 2024 Dec 26.

Abstract

We investigated oscillatory motion of a camphor disk floating on water containing 5 mM hexylethylenediaminium trifluoroacetate (HHexen-TFA) as an ionic liquid (IL). The frequency of the oscillatory motion increased with increasing concentrations of the transition metal ions Cu2+ and Ni2+ but was insensitive to Na+, Ca2+, and Mg2+, the typical metal ions in the water phase. The surface tension of the water phase containing 5 mM HHexen-TFA also increased with increasing concentrations of Cu2+ and Ni2+ but was insensitive to Na+, Ca2+, and Mg2+. Based on density functional theory, metal-ion species-dependent frequency response is discussed with regard to surface tension as the force of self-propulsion and complex formation between HHexen-TFA and metal ions. These results suggest that complex formation between the transition metal ions (Cu2+, Ni2+) and the ethylenediamine group in the IL increases the surface tension around the camphor disk, resulting in an increase in the frequency of oscillatory motion with increasing concentrations of Cu2+ or Ni2+. The present study suggests that the nature of self-propulsion can be created by complexation, which changes the force of self-propulsion.