X-Ray Image-Based Real-Time COVID-19 Diagnosis Using Deep Neural Networks (CXR-DNNs)

J Imaging. 2024 Dec 19;10(12):328. doi: 10.3390/jimaging10120328.

Abstract

On 11 February 2020, the prevalent outbreak of COVID-19, a coronavirus illness, was declared a global pandemic. Since then, nearly seven million people have died and over 765 million confirmed cases of COVID-19 have been reported. The goal of this study is to develop a diagnostic tool for detecting COVID-19 infections more efficiently. Currently, the most widely used method is Reverse Transcription Polymerase Chain Reaction (RT-PCR), a clinical technique for infection identification. However, RT-PCR is expensive, has limited sensitivity, and requires specialized medical expertise. One of the major challenges in the rapid diagnosis of COVID-19 is the need for reliable imaging, particularly X-ray imaging. This work takes advantage of artificial intelligence (AI) techniques to enhance diagnostic accuracy by automating the detection of COVID-19 infections from chest X-ray (CXR) images. We obtained and analyzed CXR images from the Kaggle public database (4035 images in total), including cases of COVID-19, viral pneumonia, pulmonary opacity, and healthy controls. By integrating advanced techniques with transfer learning from pre-trained convolutional neural networks (CNNs), specifically InceptionV3, ResNet50, and Xception, we achieved an accuracy of 95%, significantly higher than the 85.5% achieved with ResNet50 alone. Additionally, our proposed method, CXR-DNNs, can accurately distinguish between three different types of chest X-ray images for the first time. This computer-assisted diagnostic tool has the potential to significantly enhance the speed and accuracy of COVID-19 diagnoses.

Keywords: COVID; chest X-ray images; deep learning; image classification; lung infection; vision transformer.