Newborn congenital hypothyroidism (CH) screening has been widely used worldwide. The objective of this study was to evaluate the effectiveness of applying biochemical and gene panel sequencing as screening tests for CH and to analyze the mutation spectrum of CH in China. Newborns were prospectively recruited from eight hospitals in China between February and December 2021. Clinical characteristics were collected. Second-generation sequencing was used to detect four CH-related genes, and the genetic patterns of the pathogenic genes were analyzed. We analyzed the relationship between genotype and biochemical phenotype. A total of 29,601 newborns were screened for CH. Gene panel sequencing identified 18 patients, including 10 patients affected by biochemically and genetically screened disorders and 8 patients affected by solely genetically screened disorders. The predictive positive value of genetic screening was 34.62%, which was much greater than that of biochemical screening alone (17.99%). A total of 94 cases of congenital thyroid dysfunction were confirmed by biochemical and genetic screening, including 30 CHs and 64 isolated hyperthyrotropinemia (HTT), with an incidence of 1/987 for CH and 1/463 for HTT, and a total incidence of 1/315 for hypothyroidism. The incidence rate and number of patients in Jinan were the highest, and the incidence rates in Shijiazhuang and Shanghai were the lowest. The gene mutation rate in this study was 19.1%, mainly DUOX2 mutation. The most common variant of DUOX2 was c.1588A>T(p.Lys530*). There was only a difference in sFT4 between groups with gene mutations and those without mutations. Genetic screening is a supplement to biochemical screening. Combining biochemical screening with genetic screening is useful for improving screening efficiency. The incidence of CH in China according to a multicenter study of nearly 30,000 NBS surveys was 1/315. DUOX2 gene mutations are commonly detected in these patients.
Keywords: DUOX2; congenital hypothyroidism; genetic screening; newborn screening.