The diagnosis and analysis of major depressive disorder (MDD) faces some intractable challenges such as dataset limitations and clinical variability. Resting-state functional magnetic resonance imaging (Rs-fMRI) can reflect the fluctuation data of brain activity in a resting state, which can find the interrelationships, functional connections, and network characteristics among brain regions of the patients. In this paper, a brain functional connectivity matrix is constructed using Pearson correlation based on the characteristics of multi-site Rs-fMRI data and brain atlas, and an adaptive propagation operator graph convolutional network (APO-GCN) model is designed. The APO-GCN model can automatically adjust the propagation operator in each hidden layer according to the data features to control the expressive power of the model. By adaptively learning effective information in the graph, this model significantly improves its ability to capture complex graph structural patterns. The experimental results on Rs-fMRI data from 1601 participants (830 MDD and 771 HC) and 16 sites of REST-meta-MDD project show that the APO-GCN achieved a classification accuracy of 93.8%, outperforming those of the state-of-the-art classifier methods. The classification process is driven by multiple significant brain regions, and our method further reveals functional connectivity abnormalities between these brain regions, which are important biomarkers of classification. It is worth noting that the brain regions identified by the classifier and the networks involved are consistent with existing research results, which suggest that the pathogenesis of depression may be related to dysfunction of multiple brain networks.
Keywords: Deep learning; Diagnosis; Graph convolutional network; Major depressive disorder; Rs-fMRI.
Copyright © 2024. Published by Elsevier Inc.