The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously. MOCS2arc is an advanced version of the traditional Multi-Objective Cuckoo Search (MOCS) algorithm, enhanced through a dual archive strategy that significantly improves solution diversity and optimization performance. To evaluate the effectiveness of MOCS2arc, we conducted extensive comparisons with several established multi-objective optimization algorithms: MOSCA, MODA, MOWHO, MOMFO, MOMPA, NSGA-II, DEMO, and MOCS. Such a comparison has been made with various performance metrics to compare and benchmark the efficacy of the proposed algorithm. These metrics comprehensively assess the algorithms' abilities to generate diverse and optimal solutions. The statistical results demonstrate the superior performance of MOCS2arc, evidenced by enhanced diversity and optimal solutions. Additionally, Friedman's test & Wilcoxon's test corroborate the finding that MOCS2arc consistently delivers superior optimization results compared to others. The results show that MOCS2arc is a highly effective improved algorithm for multi-objective truss structure optimization, offering significant and promising improvements over existing methods.
Keywords: Archive; Convergence; Diversity; Pareto dominance; Structure design; Truss.
© 2025. The Author(s).